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Abstract 

  

DELETION OF CARDIAC miR-17-92 CLUSTER INCREASES ISCHEMIC/REPERFUSION 

INJURY VIA PTEN UPREGULATION  

By: Meeta Prakash, M.S. 

  

A thesis (or dissertation) submitted in partial fulfillment of the requirements for the 

degree of (list degree, for example, Master of Science, Doctor of Philosophy, Master of Social 

Work) at Virginia Commonwealth University. 

  

Virginia Commonwealth University, 2017 

  

Major Director: Anindita Das, PhD 

Assistant Professor 

VCU School of Medicine 

Division of Cardiology 

  

The miR-17- 92 cluster is necessary for cell proliferation and development of the 

cardiovascular system. Deletion of this cluster leads to death in neonatal mice. The role of this 

cluster still needs to be defined following ischemia and reperfusion. Methods and Results: 

Adult male mice were injected with  Tamoxifen- was to induce inducible cardiac-specific miR-

17- 92-deficient (miR-17- 92-def: MCM:TG:miR-17- 92 flox/flox ) and wild type (WT: 

MCM:NTG:miR-17-92 flox/flox ) mice were subjected to 30 minutes of myocardial ischemia via 

left anterior descending coronary artery ligation followed by reperfusion for 24 hours. Post I/R 

survival (48%) and ejection fraction were reduced, while myocardial infarct size enlarged in 

miR-17- 92-deficient mice as compared to WT mice (survival: 71%). Necrosis (trypan blue 
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staining) and apoptosis (TUNEL assay) both  were higher in adult cardiomyocytes isolated from 

miR-17- 92-deficient mice as compared to WT mice subjected to simulated 

ischemia/reoxygenation with  a concomitant reduction of mitochondrial membrane potential 

(JC1 staining). The electron transport chain was compromised through dysregulation of 

glutamate+malate as complex I substrate and malate dehydrogenase in the hearts of miR-17- 92-

deficient mice compared to WT. After 4 hours of reperfusion, PTEN expression, a downstream 

target of miR-20A, increased, while phosphorylation of AKT reduced in the hearts of miR-17- 

92-deficient mice in comparison to WT. The induced knockdown of cardiac miR-17- 92 

increases myocardial I/R injury by ceasing suppression of PTEN, leading to decreased 

concentrations of AKT and mitochondrial dysfunction. These results suggest that innovative 

therapeutic strategies can focus on genetic upregulation of miR-17- 92 in patients with coronary 

artery disease.  
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Introduction 

1.1 Ischemic Heart Disease 

 According to the Center for Disease Control, heart related diseases are the leading 

cause of death in the United States at just over 600,000 deaths in 2014 alone1. Worldwide, ischemic 

heart disease killed almost 9 million people in 20152. Many heart diseases involve pressure or 

volume overload causing hypertrophy of the heart, leading to heart failure 3.  Coronary Artery 

Disease (CAD) contributes to myocardial infarction(MI) and ischemia through occlusion of blood 

vessels that provide oxygen to  cardiac muscle cells. This reduction of blood flow usually stems 

from thrombosis in an artery in conjunction with an atherosclerotic plaque4. The current treatment 

for myocardial infarction is restoration of blood flow. The process of reperfusion, however, can be 

harmful and cause cells to undergo  apoptosis. Even if a person survives an infarction, the resulting 

damage to the myocytes and extracellular matrix can lead to progressive ventricular dilation and 

eventual heart failure5. The degradation and heart failure can significantly reduce quality of life 

and even cause death. These patients rely on medical intervention to sustain life. Therefore  the 

public health system remains concerned about not only preventing myocardial infarctions, but also 

limiting the aftermath of this event. Cardioprotective therapies and post-ischemic conditioning 

have become large focuses of the scientific community,  and discovering novel ways to better 

understand myocardial infarction remains paramount. 

1.2 Necrosis and Apoptosis 

The cell cycle regulates the stages at which the cell will grow, replicate DNA and divide 

into daughter cells. However, sometimes this process can be halted by death of the cell.  This 

usually occurs by either necrosis or apoptosis. Myocardial injury stems from an increase in both 

necrosis and apoptosis. Upon reperfusion, the immediate lethal myocardial injury is necrotic, while 

https://paperpile.com/c/QKrO5Q/YmGG
https://paperpile.com/c/QKrO5Q/h3U7
https://paperpile.com/c/QKrO5Q/fXvD
https://paperpile.com/c/QKrO5Q/2pq8
https://paperpile.com/c/QKrO5Q/GUtf
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delayed injury is apoptotic6. Focusing on delayed injury allows therapies to be used in conjunction 

to prevent further damage to the heart6.  Hallmarks of necrosis include cellular swelling until the 

cell lyses, ATP depletion, random DNA fragmentation, and areas of tissue are affected. Necrosis 

can attract neutrophils and lead to inflammation. In apoptosis, cellular condensation means that 

the membranes remain intact as it is systemically phagocytosed with ladder-like DNA 

fragmentation. Apoptosis is a gene directed process and sometimes individual organelles are still 

functional. Typically a stimulus will begin the intracellular response through signal transduction 

and activate transcription factors. Apoptosis can play a positive role by helping with tissue 

remodeling and eliminating cells that are damaged or no longer required.  

Several signaling pathways can cause the cells to undergo apoptosis. There can be a 

withdrawal of signals like growth factors or interleukin-2 or receipt of negative signals like 

increased oxidant levels, DNA damage, or death activators, and lymphotoxin like TNF-β. The 

extrinsic pathway consists of death ligands attaching to receptors and initiating a caspase 8 

mediated pathway through the caspase 3 to programmed cell death. The extrinsic pathway bound 

caspases become activated through an “induced proximity” mechanism by aggregation7. 

Common ligands include Fas, tumor necrosis factor alpha (TNF-⍺), and TNF related 

apoptosis inducing ligand (TRAIL) 8.  

The intrinsic pathway begins with DNA damage and p53 activation, which causes 

mitochondrial depolarization and release of cytochrome C or Smac/DIABLO into the cytoplasm. 

Cytochrome C can also be released through a disruption in the pro-apoptotic protein Bax and anti-

apoptotic protein Bcl-2 ratio9. Sometimes, ATP depletion can initiate the the movement of Bax 

from the outer mitochondrial membrane and cause cytochrome c to be released10. If the release 

channels are not formed through Bax/ Bcl2 heterodimerization, cytochrome c can be released 

https://paperpile.com/c/QKrO5Q/MoKN
https://paperpile.com/c/QKrO5Q/MoKN
https://paperpile.com/c/QKrO5Q/tsWa
https://paperpile.com/c/QKrO5Q/Ab7Y
https://paperpile.com/c/QKrO5Q/0kRF
https://paperpile.com/c/QKrO5Q/ZpkG
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through outer membrane rupture due to opening of the mitochondrial permeability transition pore9. 

Cytochrome c binds to adaptor protein (Apaf-1), aggregates with procaspase 9, and activates 

caspase 9 and caspase 3 programmed cell death 11. Smac/DIABLO inhibits inactivators of 

apoptosis (IAPs) which prevents cleavage of procaspase 38. Caspase 3 finishes the cascade by 

inducing apoptosis through cleavage of PARP, an enzyme that is also activated by DNA damage 

10. In type 1 cells, death receptor ligation is enough to lead to cell death, but in type 2 cells death 

is dependent on the mitochondrial pathway through Bax and Bcl-2. If caspase 8 activation occurs 

in type 2 cells, caspase 8 interacts with Bid, an agonist of Bax 8. After damage occurs in the heart, 

too much apoptosis can lead to wall thinning and cardiac remodeling, which can lead to heart 

failure. However, dysregulation in apoptosis can also lead to hyperplasia and cancer10. Caspase 

inhibitors have been reported to attenuate myocardial ischemia/reperfusion injury, however, once 

the apoptotic cascade has been initiated it is irreversible10. Reperfusion has been shown to 

accelerate the apoptotic process and thus focusing on ischemia and reperfusion injury is important 

to prevent further heart failure10. 

  

https://paperpile.com/c/QKrO5Q/0kRF
https://paperpile.com/c/QKrO5Q/A3Y7
https://paperpile.com/c/QKrO5Q/Ab7Y
https://paperpile.com/c/QKrO5Q/ZpkG
https://paperpile.com/c/QKrO5Q/Ab7Y
https://paperpile.com/c/QKrO5Q/ZpkG
https://paperpile.com/c/QKrO5Q/ZpkG
https://paperpile.com/c/QKrO5Q/ZpkG
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Figure 1: The Extrinsic and Intrinsic Pathways of Apoptosis Programmed cell death can be 

executed via outside signals or via cell corruption indicating that damage to organelles or DNA 

are too extensive. Both ultimately end in a caspase 3 mechanisms with PARP cleavage.  
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1.3 Mechanisms of Ischemic Injury 

 The four described categories of myocardial ischemic and reperfusion injury 

include 1) reperfusion arrhythmias, 2) myocardial stunning due to contractile dysfunction, 3) 

microvascular obstruction leading to ischemia and 4) lethal reperfusion injury causing apoptosis 

even after ischemia ends. Among these, microvascular obstruction and reperfusion injury are 

potential targets for significant therapeutic interventions  as the primary determinant for the size 

of the infarct are the length of ischemia and attenuation of reperfusion injury. In ischemia, lack of 

blood from the occluded arteries causes myocytes in that area to be at risk of a heart attack4. Due 

to the high demand of myocyte contractile activity, ATP must be continuously supplied by 

mitochondria, which are distributed in high concentrations throughout in either the sarcolemma or 

in between fibers. If prolonged ischemia occurs from microvascular obstruction, myocyte death 

starts in the endocardium and continues to the epicardium as oxygen supply remains low. This 

begins when oxidative phosphorylation stops, ending generation of ATP and destabilizing the 

mitochondrial membrane.  

The electron transport chain, consisting of four protein complexes that help produce ATP, 

becomes vulnerable and damaged during the period of ischemia12. Complex I oxidizes NADH, 

passing the electron to coenzyme Q which reduces complex III, then cytochrome c and finally 

becomes oxidized by complex IV to produce water. Complex II also reduces coenzyme Q. The 

sum of all these reactions creates a proton gradient due to the transfer of hydrogen ions from the 

matrix of the inner membrane. Cellular metabolism starts utilizing anaerobic glycolysis, and the 

buildup of lactate in the cytosol causes the pH to drop12. The high concentration of hydrogen ions 

utilizes the membrane- bound Na+ and H+ anti porter, which exchanges the ions and causes sodium 

to increase. Because ATP is in limited quantity, the sodium calcium antiporter tries to dispose of 

https://paperpile.com/c/QKrO5Q/2pq8
https://paperpile.com/c/QKrO5Q/7gLi
https://paperpile.com/c/QKrO5Q/7gLi
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the excess sodium and results in a large buildup of calcium, which closes the Mitochondrial 

Permeability Transition Pore (MPTP). The MPTP normally remains closed, and helps to ensure 

the selectivity and ionic gradient. Physiological gradients are disrupted and myocyte contractions 

end. This disruption of metabolic processes and reduction of ATP then can act as the impetus for 

a biochemical chain that leads to programmed cell death. Though activation of apoptosis begins 

during ischemia, 25-40% of eventual cardiac death stems from reperfusion4.  

1.4 Mechanisms of Reperfusion Injury 

 In patients experiencing microvascular obstruction, timely reoxygenation, or 

reperfusion, to the myocardium helps mitigate infarct size and heart failure 13. Reperfusion is 

necessary in order for the heart to survive, however, it can also further increase infarct size. To 

understand the negative effects of reperfusion, the progression of programmed cell death, or 

apoptosis, must first be explored. During restoration of blood flow, the electron transport chain, 

located on the inner mitochondrial membrane restarts and generates excessive reactive oxygen 

species12. As blood enters and washes out the lactic acid, the pH returns to neutral and causes the 

reactive oxygen species to increase calcium concentrations, which  leads to the MPTP opening and 

inner mitochondrial membrane depolarization. The decreased permeability of the mitochondria 

also causes the organelle to swell, destabilizing the outer mitochondrial membrane.  

Though ischemia initiates apoptosis, reperfusion further aggravates the process by 

changing the normal ratio of mitochondrial apoptotic proteins such as Bax and Bcl2 leading to the 

caspase-3 or caspase- 8 enzyme execution of cell death14. The swelled mitochondria eventually 

bursts, releasing pro-apoptotic proteins like cytochrome c and Bax13. The potential for therapies 

that target the Bax and Bcl2 ratio, prevent the opening of the MPTP, and attenuation of the reactive 

oxygen species remains high4.  

https://paperpile.com/c/QKrO5Q/2pq8
https://paperpile.com/c/QKrO5Q/TFPn
https://paperpile.com/c/QKrO5Q/7gLi
https://paperpile.com/c/QKrO5Q/kU7j
https://paperpile.com/c/QKrO5Q/TFPn
https://paperpile.com/c/QKrO5Q/2pq8
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Mitochondria play an important role in the energetics of a cell by producing 95% of ATP, 

though these organelles also consume 90% of the oxygen15. Two potential sites of free radical 

oxygen generation are in the electron transport chain in the mitochondria. During ischemia, the 

mitochondria try to produce ATP, but without a steady supply of oxygen, NADH dehydrogenase 

in complex I1 and cytochrome b-c1 in complex III will produce free radicals16. These reactive 

oxygen species injure the cell by reducing mitochondrial membrane potential and causing the 

release of cytochrome c into the cytosol, leading to apoptosis. In the myocyte, there are also 

antioxidant enzymes such as superoxide dismutase and glutathione peroxidase that protects the 

cell from damage by reducing hydrogen peroxide and free radicals17.  Current ideas for treatment 

include giving antioxidants at the time of myocardial reperfusion to prevent the apoptotic cascade, 

treating with solutions stopping the actions of the electron transport chain, and preconditioning 

cells to ischemia to reduce abundance of reactive oxygen species. However, methods like these 

are either proving to have mixed results clinically or remain difficult as it is hard to predict 

complete microvascular obstruction12. Unfortunately, options to reduce the infarct size are limited 

and thus techniques to boost cardioprotection in ischemia and reperfusion are still important to 

investigate. 

  

https://paperpile.com/c/QKrO5Q/7thS
https://paperpile.com/c/QKrO5Q/DgPR
https://paperpile.com/c/QKrO5Q/EpjF
https://paperpile.com/c/QKrO5Q/7gLi
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Figure 2: Cardiac Ischemia Cycle Once heart damage begins, a positive feedback cycle can occur 

where myocardial damage leads to additional heart failure. The infarct region from ischemia does 

not contract and the heart attempts to compensate through adverse remodeling, such as 

hypertrophy that can lead to more opportunities for myocyte damage.  
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1.5 MicroRNA 

 MicroRNA (miR) are small non-coding RNAs about 20-24 nucleotides  long  that 

controls gene expression. Often, their role is to regulate post-transcriptional gene expression 

through binding the 3’ UTR of  mRNA causing their inhibition or degradation. Thousands of 

microRNAs have been discovered, though not all their functions and targets have been elucidated. 

The miRs are synthesized via  transcription  of  the pri-micro-RNA in the nucleus as a hairpin 

structure, gets cut by Drosha, and exits the cell via Exportin- 5 as pre-miRNAs. Once in the 

cytoplasm, Dicer cleaves the pre-miRNAs into smaller double stranded RNA called RNA 

duplexes. These structures then can be used by the RNA- induced silencing complex (RISC) to 

bind to the mRNA 18. Sometimes the sequences can be perfectly complementary at the binding 

region leading to degradation of mRNA, or can bind imperfectly at the nucleotide positions 2-7 in 

the seed region resulting in the suppression of the gene expression 19. miRNA with similar 

nucleotides at this location are said to have the same seed sequence, may have similar targets  and 

are categorized to the same family. 

 Many microRNA, such as miR-1, miR-208, miR-133a and miR- 27b, have already  

been identified as having an instrumental roles in cardiac development and function 20,21–23. Some 

of these roles include cell proliferation, conduction, and differentiation.  

1.6 Functions of the miR-17-92 Cluster 

 The miR- 17-92 family, also known as oncomir-1, is located on chromosome 13 

and comprised of six microRNAs, including miR-17, miR- 18a, miR- 92a, miR- 106, miR- 19a/b, 

and miR-20a/b24. This cluster originally was discovered as a human oncogene causing cells to 

bypass the apoptotic checkpoint, but later it was found necessary to form cardiomyocytes in 

embryonic mice25. Additionally, this cluster is required for further proliferation of cardiomyocytes 

https://paperpile.com/c/QKrO5Q/5CPx
https://paperpile.com/c/QKrO5Q/QzkT
https://paperpile.com/c/QKrO5Q/DsAs
https://paperpile.com/c/QKrO5Q/vJz2+Jy2J+hoVV
https://paperpile.com/c/QKrO5Q/BDi8
https://paperpile.com/c/QKrO5Q/9KaT
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during the postnatal stage, and as a critical part of bone morphogenetic protein (BMP) signaling26. 

This cluster also seems to be partially responsible for angiogenesis through endothelial cells, 

matrix remodeling, and hematopoiesis27,28 Mutant miR-17-92 postnatal mice hearts were shown 

to be reduced in size compared to their controls29. This cluster can be regulated by vascular growth 

endothelial factor-A (VEGF),  Elk-1 mitogen stimulation, fibroblast growth factor 2, and 

extracellular signal regulated kinase 19,30. The E2F family of transcription factors regulate cell 

cycle progression and apoptosis, and interacts closely with miR-17-9231,32. Downregulation of this 

cluster can cause upstream regulators like VEGF to induce angiogenic responses in endothelial 

cells and change developmental responses30. Deletion of this cluster leads to apoptosis in Myc-

driven lymphoma cells, as miR-17-92 accelerates Myc-induced B cell lymphomagenesis33,34. 

PTEN, a tumor repressor, was also identified as a  potential target for the cluster, and specifically 

miR-19a/b 29.  

Three subdivisions of the miR-17-92 clusters, miR-17, miR-19, and miR- 93 were shown 

to suppress apoptosis22,23,24,26. The members of the miR-17 found to inhibit tumor cell death 

through enhancing the Stat3 and resisting the MEK pathway 35.  Additionally, it was found to 

inhibit a pro-apoptotic protein Bim and dysregulate the p53 pathway which leads to cell cycle 

arrest 36. Bim protein levels were increased in embryos that had targeted deletions of the miR-17-

92 cluster37,38. Bim acts by antagonizing antiapoptotic proteins like Bcl-2. MiR- 17 was found to 

be significantly upregulated after myocardial infarctions, and decreases tissue inhibitor of 

metalloproteinases to increase cardiac remodeling5. MiR-17 concentration was significantly lower 

in the plasma of patients with coronary artery disease, suggesting a role in atherosclerosis39. 

Approaches to reduce miR-17 after a myocardial infarction may help prevent subsequent heart 

failure due to ventricular dilation. MiR-20a specifically was found to regulate Fas expression 

https://paperpile.com/c/QKrO5Q/XUGH
https://paperpile.com/c/QKrO5Q/fqyr+BoEk
https://paperpile.com/c/QKrO5Q/JOKW
https://paperpile.com/c/QKrO5Q/QzkT+iTrW
https://paperpile.com/c/QKrO5Q/0YyN+6KoD
https://paperpile.com/c/QKrO5Q/iTrW
https://paperpile.com/c/QKrO5Q/rOKI+AWIt
https://paperpile.com/c/QKrO5Q/JOKW
https://paperpile.com/c/QKrO5Q/xlZk
https://paperpile.com/c/QKrO5Q/awTK
https://paperpile.com/c/QKrO5Q/i446+XC8F
https://paperpile.com/c/QKrO5Q/GUtf
https://paperpile.com/c/QKrO5Q/PtCi
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creating the malignant cell type in osteosarcoma cells and piquing interest in the potential 

capability to pause apoptosis in cardiomyocytes 36,40.MiR-20a also inhibits hypoxia- induced 

apoptosis through targeting Egln3/PHD3, a prolyl hydroxylase domain protein 39. Three PHDs 

(PHD1, PHD2, and PHD3) catalyze the degradation of HIF by hydroxylating proline residues in 

the HIF-1α subunit in the normoxic state. In hypoxia, PHDs cannot perform and HIF-1α 

accumulates and increases target gene expression. PHD3 concentration is linked with apoptosis as 

it is found to be upregulated in cardiomyopathy, myocardial I/R injury and congestive heart failure 

41. PHD3 interacts with Bcl-2 and prevents formation of the anti-apoptotic complex Bax-Bcl-241. 

PHD2 inhibition has been shown to mitigate I/R injury, so regulation of PHD3 through miR-17-

92 could be a potential therapeutic target 42. The overexpression through adenoviruses of miR-17 

and miR-20a both also downregulated E2F131. E2F1 overexpression can play a role in increasing 

apoptosis. The mir-19 family also works through the Stat3 and Bim proteins. MiR-18 and miR-19 

downregulate the anti-angiogenic factors thrombospondin-1 (Tsp-1) and connective tissue growth 

factor (CTGF), causing increased blood vessel growth and tumor angiogenesis43. The mir-19 and 

mir-92 families both inhibit TNF related proteins to reduce incidence of programmed cell death44. 

Oligonucleotides can antagonize miR-92a to promote blood vessel growth and recovery from 

ischemia45. The proven capability of the miR-17-92 families to reduce apoptosis suggests that this 

cluster might help reduce cardiomyocyte death in the case of ischemia. Reduced myocardial 

infarction by coronary artery occlusion and preserved  post-MI cardiac function results from miR-

17-92 overexpression29. However, the role of this cluster is still uncertain because of the 

differential expression of cluster targets on angiogenesis needs to be investigated further.  

Although miRNAs can be found throughout the body, cluster expression can vary greatly 

by tissue type.  Furthermore, sample concentrations of the miR-17-92 cluster in canine tissue show 

https://paperpile.com/c/QKrO5Q/awTK+c9XD
https://paperpile.com/c/QKrO5Q/PtCi
https://paperpile.com/c/QKrO5Q/liTc
https://paperpile.com/c/QKrO5Q/liTc
https://paperpile.com/c/QKrO5Q/xZOY
https://paperpile.com/c/QKrO5Q/0YyN
https://paperpile.com/c/QKrO5Q/XBON
https://paperpile.com/c/QKrO5Q/10hB
https://paperpile.com/c/QKrO5Q/Nw0X
https://paperpile.com/c/QKrO5Q/JOKW
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that miR-20 is the most highly expressed of the cluster in the heart18. Murine samples also show 

miR-20 to be densely concentrated in the lung and heart, demonstrating potential for miR-20 be 

used in cardioprotection 46. Disentangling the roles of the miR-17-92 cluster can have a significant 

impact on the way that physicians could treat patients following an infarction, like therapeutic 

inhibition of specific microRNA clusters.  

1.7 Phosphatase and tensin homolog (PTEN) Pathway 

 MiR-17-92 regulates heart size by repressing PTEN and cardiac impulse 

propagation through interacting with Connexin-43 (Cx43)37. PTEN is a tumor suppressor and 

inhibitor of the Phosphoinositide-3- Kinase (PI3K)/ Akt/ mTOR pathway and is necessary for 

regulation of cardiomyocyte size and contractility3. PTEN knockout has been identified in human 

cancers, leading to increased downstream signaling and the metastatic phenotype47. PTEN 

prevents myocyte proliferation, vascular growth, and angiogenesis by obstructing PI3K/AKT48,49. 

In cardiomyocytes, PI3Kˠ is a lipid kinase that functions in cellular signaling like proliferation, 

cell size and prevention of apoptosis 3. Phosphorylated lipids are found in the cellular membrane 

and recruit other components to further the stimulus during the signaling event47. PTEN acts as a 

phosphatase to decrease the concentration of lipids and stops the PI3K pathway, and in knockout 

mice is lethal. A downstream target of PI3Kˠ is cAMP, which when inhibited, led to the decreased 

contractility and when enhanced activated PKA and phospholamban to intensified contractility3,50. 

The AKT pathway is a target of the PI3K signaling molecule which can influence many 

downstream proteins, and when activated creates higher concentrations of phosphorylated AKT. 

AKT activation improves cardiac function, infarct size, and decreases apoptosis following an 

ischemia and reperfusion event51–53. When AKT phosphorylates Bad, it inhibits the BAD/ Bcl-2 

complex and allows the Bcl-2 protein to participate in a cell survival response47. PTEN repression 

https://paperpile.com/c/QKrO5Q/5CPx
https://paperpile.com/c/QKrO5Q/EKID
https://paperpile.com/c/QKrO5Q/i446
https://paperpile.com/c/QKrO5Q/fXvD
https://paperpile.com/c/QKrO5Q/APFg
https://paperpile.com/c/QKrO5Q/bSYk+K1W9
https://paperpile.com/c/QKrO5Q/fXvD
https://paperpile.com/c/QKrO5Q/APFg
https://paperpile.com/c/QKrO5Q/fXvD+nLyd
https://paperpile.com/c/QKrO5Q/Vzwx+J03Z+usnG
https://paperpile.com/c/QKrO5Q/APFg
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causes increased levels of phosphorylated AKT, which elevates myocardial microvascular density 

and mitigates remodeling following myocardial infarction 54.  Thus, the loss of miR-17-92 could 

influence the PTEN pathway and lead to changes in fractional shortening and cardiac size. Looking 

closely at the effects of miR-17-92 and PTEN in apoptosis could help to attenuate myocardial 

infarction injury.  

  

https://paperpile.com/c/QKrO5Q/CnoP
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Figure 3: PTEN Pathway and Targets Following overexpression of the miR-17-92 cluster in 

myocardial ischemia and reperfusion injury, downstream changes lead to increased cardiac 

function and contractility and decreased apoptosis.  
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Materials and Methods 

2.1 Animals 

Adult male mir-17~92fl/fl mice flanked by loxP sites crossbred with αMHC-MerCreMer cre 

recombinase tamoxifen inducible mice were received from Augusta University (formerly Georgia 

Regents University in Augusta, Georgia, stock numbers 008458 and 005650). The C57BL/6J mice 

were supplied by The Jackson Laboratory (Bar Harbor, ME). The animal care and experiment 

protocols were approved by the Institutional Care and Use Committee of Virginia Commonwealth 

University.  

2.2 Genotyping Selective Knockout Mice and Experimental Groups 

A portion of the tail was used to isolate DNA to correctly segregate mice into miR-17~92fl/fl 

groups (double transgenic), detect the presence of the cre recombinase gene, and confirm the 

knockdown of the miR-17-92 cluster. First 75 µl of a solution of 25mM NaOH and 0.2mM EDTA 

(pH of 12) was added to the tail segment and then incubated at 95˚C for 30 minutes. After cooling 

this solution on ice, 75 µl of a second neutralizing solution of 40mM Tris-HCl (pH of 5) was added 

and then vortexed. The solution was then centrifuged for 5 minutes at 12,000g. 2 µl of this sample 

was then added into the PCR mix specific to the number of reactions and type of reaction. The 

enzyme mix includes nuclease free water, dNTPs, Dream Taq DNA Polymerase, and 10X buffer 

to create a final volume of 25 µl. The polymerase chain reaction would be run according to the 

appropriate Jackson Laboratory genotyping protocol for the specific mice 55,56.  

For miR-17-92fl/fl, three primers were utilized; oIMR8528 (sequence: 

TCGAGTATCTGACAATGTGG), oIMR8529 (sequence: TAGCCAGAAGTTCCAAATTGG), 

and oIMR8530 (sequence: ATAGCCTGAAACCAACTGTGC). Initial denaturation occurred for 

3 minutes at 94˚C, and was followed by 40 cycles of 94˚C denaturation for 30 seconds, 56˚C 

https://paperpile.com/c/QKrO5Q/Ry1e+Rwex
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annealing for 1 minute, and 3 minutes of extension at 72˚C. The final extension took place for 5 

minutes at 72˚C and kept at 4˚C until electrophoresis. The mutant gene would appear at 289 base 

pairs, while the wild type would be at 255 base pairs after PCR and electrophoresis. This method 

was utilized to eliminate any mice that did not have the mutant strain of the miR-17-92 cluster that 

was flanked by loxP sites. LoxP sites allow for a conditional deletion through the cre recombinase 

technology. Through the administration of tamoxifen, the CRE transgene will influence the 

cardiac- specific alpha myosin heavy chain promoter and knocks down the expression of the loxP 

flanked site, the miR-17-92 cluster. 

To confirm the tamoxifen-inducible CRE recombinase gene, two primers were used;  CRE 

(608-630 sequence: ATATCTCACGTACTGACGGTGGG) and CRE (1054-1032 sequence: 

CTGTTTCACTATCCAGGTTACGG). Initial denaturation occurred for 2 minutes at 94˚C, which 

was followed by 35 cycles of 94˚C denaturation for 1 minute, 60˚C annealing for 1 minute, and 2 

minutes of extension at 72˚C. The final extension took place for 7 minutes at 72˚C and kept at 4˚C 

until electrophoresis. After running through the gel, the CRE mutant would appear at 448 base 

pairs. 

Finally to confirm CRE recombinase in the correct location (MYH6-CRE), four primers 

were used CRE (608-630), CRE (1054-1032), A1CF (4879-4902) and A1CF (5108-5085). Initial 

denaturation occurred at 95˚C for 3 minutes , and was followed by 40 cycles of 95˚C denaturation 

for 30 seconds, 60˚C annealing for 30 seconds, and 1.5 minutes of extension at 72˚C. The final 

extension took place for 5 minutes at 72˚C and kept at 4˚C until electrophoresis.The CRE transgene 

would be at 448 base pairs, while the non transgenic band would appear at 230 base pairs. Samples 

could be hemizygous, homozygous, or nontransgenic. To confirm the deletion of miR-17-92 

cluster in the heart with MYH6-CRE following tamoxifen treatment, DNA was extracted from 
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cardiac tissue samples using the Qiagen DNeasy Blood & Tissue kit (Catalog number 69504) and 

the miR-17-92fl/fl.  

The CRE recombinase samples were then run through a 1.5% agarose gel on a Bio-Rad 

electrolysis machine with TBE running buffer for 30 minutes at 100 volts. The miR-17-92fl/fl and 

MYH6-CRE samples were then placed in a 1.75% agarose gel and underwent electrolysis for 50 

minutes at 100 volts with TBE running buffer. The amplified cDNA sizes were then visualized in 

the gel using SpectrolineⓇ UV transilluminator.  

The mice were separated into two groups; the first contained both the mutant miR-17-92 

cluster and the appropriate transgene for CRE recombinase technology, and the second were the 

mice that did not test positive for the appropriate CRE recombinase gene. The first group was then 

put through a tamoxifen regimen to reduce concentrations of the miR-17-92 cluster. The two 

separate groups are demarcated as miR-17-92-deficient (miR-17-92-def: MCM:TG:miR-17-92 

flox/flox) mice and wild type (WT: MCM:NTG:miR-17-92flox/flox) mice. 

2.3 Tamoxifen 

Adult male mice were injected with 20 mg/kg concentration of tamoxifen via 

intraperitoneal injection for five consecutive days to create miR-17-92 deficient mice. The 

tamoxifen T5648 was purchased from Sigma- AldrichTM.  

Experimental Design:  

For in vivo study, adult male WT and miR-17-92-def mice (body weight~ 35 g, ~ 8-10 months old, 

after 1-week of tamoxifen treatment (20 mg/kg, i.p. for 5 days)) were subjected to in vivo ischemia 

for 30 minutes and reperfusion for 1 hour to examine protein expression and phosphorylation or 

reperfusion for  24 hours for measurement of cardiac function and infarct size. For in vitro 
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methodology, mitochondria were isolated from tamoxifen-treated adult WT and miR-17-92-def 

mice and oxidative phosphorylation and mitochondrial proteins were analyzed.  

Primary cardiomyocytes were isolated from tamoxifen-treated WT and miR-17-92-def mice and 

after 40 min simulated ischemia (SI) and 1 hr reoxygenation (RO), necrosis and mitochondrial 

membrane permeability were assessed by trypan blue staining and JC-1 staining, respectively. 

Cardiomyocyte apoptosis were assessed by TUNEL assay following 18 hours of RO.  
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Figure 4: Experimental Design: In vivo studies included ischemia/reperfusion (I/R), 

measurements of cardiac function by echocardiography and quantitation of infarct size by 

triphenyl tetrazolium chloride (TTC) staining. In vitro experiments include mitochondrial 

oxidative phosphorylation studies and cardiomyocyte simulated ischemia and reoxygenation. 

Staining and protein analysis were achieved at different timepoints to measure apoptosis and 

protein targets. 
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2.4 Ischemia and Reperfusion via simulated Myocardial Infarction 

The in vivo ischemia and reperfusion (I/R) protocols were accomplished by ligation of the 

left anterior descending coronary artery (LAD) and referenced by previously published methods57.  

First, the mouse was anesthetized with pentobarbital sodium (70 mg/kg via intraperitoneal 

injection) and placed on a positive pressure ventilator. After ensuring the animal was unconscious, 

the left chest was opened at the fourth intercostal space and the pericardium was cut to visualize 

the heart. The LAD was then occluded for 30 minutes by placing a 2mm piece of polyethylene 

tubing (PE10) on top of the vessel and then tying a 7.0 silk ligature around the vessel and tubing. 

Reperfusion was accomplished by removing compression of the PE10 tube. The air was then 

expelled from the thoracic cavity and then the chest was closed using the silk ligatures. After a 

short period of time, the mouse was taken off the ventilator, and put into cage on a heating pad 

until regaining consciousness. Then the mouse was left to reperfuse for 24 hours. 

2.5 Infarct Size Measurement 

After 24 hours of reperfusion following 30 minutes of ischemia, the heart was removed 

from an anesthetized mouse. The heart was then attached via the aorta onto a Lagendorff appartus. 

First, a 37˚C Krebs-Henseleit buffer was perfused through the coronary arteries to wash the excess 

blood from the heart. Thereafter, a 3 ml solution of triphenyl tetrazolium chloride (TTC) in isotonic 

phosphate buffer (pH 7.4) at 37˚C was perfused into the heart. This solution to will show the area 

at risk. TTC- positive areas are stained red, while the TTC- negative areas remain white indicating 

an infarct (necrosis). The ligature was then tightened to ligate the LAD again and ~1ml of 5% 

Phthalo blue dye was injected into the aorta until the non risk area of the heart appeared blue. 

Finally, the heart was infused with saline to wash out the excess dye. The heart was then placed 

into a -20˚C freezer overnight. Immediately after removing the frozen hearts, a sharp blade cut the 

https://paperpile.com/c/QKrO5Q/HT43
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heart from apex to base in approximately 1mm thick slices. The slices were fixed in a 10% neutral 

buffered formaldehyde with a weight placed on top. The slices sat for 4 to 24 hours before being 

photographed. The infarcted tissue, the risk area, and the remained tissue were analyzed and 

calculated by computer morphometry using ImageJ imaging software. 

2.6 Echocardiography 

To monitor cardiac function in each mouse, an echocardiogram was taken at baseline 

before surgery and 24 hours after ischemia. Mice were anesthetized with 2.5L/min Isoflurane. 

After placing the mouse on the conductive platform while continuing to administer 1.5L/min 

Isoflurane, hair was removed from the chest. Then using a 30-MHz probe, two-dimensional 

Doppler images were taken of the short parasternal axis view of the heart via M-mode and B-mode 

on the VisualSonics Vevo 2100 Imaging System. The echocardiograms were analyzed using Vevo 

LAB 1.7.1 by tracking ejection fraction (EF), fractional shortening (FS), left ventricular end 

diastolic diameter (LVEDD), and left ventricular end systolic diameter (LVESD). 

2.7 RNA Isolation 

Mice were treated with pentobarbital sodium (100 mg/kg intraperitoneally) until 

unconscious. The hearts were then extracted by cutting the thoracic cavity from the base. The 

hearts were then cleaned with phosphate-buffered saline (PBS), quickly put into a plastic bag, and 

placed into liquid nitrogen. Total RNA including small RNA was isolated from frozen mouse heart 

tissue of using miRNeasy mini kit according to manufacturer’s protocol (QIAGEN Sciences, MD, 

USA catalog number 217804).  Concentration and the purity of isolated RNA was checked using 

Nanodrop ND-1000 spectrophotometer (Agilent technologies, CA, USA). Briefly 10 ng of total 

RNA was subjected to a reverse transcription reaction with miRNA specific RT primer using  a 

microRNA reverse transcription kit (Applied Biosystems, CA, USA). For mRNA quantification, 
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2 ug of total RNA was used for cDNA synthesis. Reverse transcription was performed either using 

stem loop specific micro-RT primer or hexamer under the following condition : 16°C for 30 

minutes ; 42°C for 30 minutes and 85°C for 5 minutes. The obtained cDNA was subjected to real-

time PCR using Taqman amplicon specific assay probe under the following PCR cycle condition: 

95°C for 10 minutes; 95°C for 15 seconds and 60°C for 60 seconds. Real time PCR was performed 

using Roche Light cycler 480 II (Roche Applied Science, IN, USA). Taqman miRNA/mRNA 

assay probe (Occ-miR-302a-UAAGUGCUUCCAUGUUUUGGUGA)[AD1]  were used (Applied 

Biosystems, CA, USA) to determine the expression level of miRNA-17 and 20a and were 

normalized using sno-202. 
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Figure 558: Genomic Map of Cluster miR-17-92 miR-20A 

(UAAAGUGCUUAUAGUGCAGGUAG;  Assay ID- 000580) annd miR-17 

(CAAAGUGCUUACAGUGCAGGUAG;  Assay ID- 002308) probes were developed based on 

the sequence upstream and downstream of these two miRNA. The housekeeping RNA used for 

comparison was snoRNA202 (GCTGTACTGACTTGATGAAAGTACTTTTGAACC 

CTTTTCCATCTGATG;  Assay ID- 001232). 
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2.8 Mitochondrial Isolation and Oxidative Phosphorylation Measurements 

Isolated mitochondria were used to study the effects of miR-17-92 knockdown on oxidative 

phosphorylation59. After removing the heart from an anesthetized mouse, it was rapidly placed in 

a cold buffer A (consisting of 100mM KCl, 50mM MOPS [3 (N morpholino) propanesulfonic 

acid], 1 mM EGTA, 5 mM MgSO4, 1 mM ATP). The tissue was then homogenized in the buffer 

A by utilizing a Polytron tissue homogenizer for 3 seconds. A 1:1 solution of trypsin (5 mg/g 

tissue) and buffer B ( buffer A + 0.2% bovine serum albumin) was then added to the homogenate 

before centrifugation at 500g for 10 minutes. The supernatant was again centrifuged at 3000g to 

precipitate mitochondria. The pellet was then washed with buffer B and KME (100 mM KCl, 50 

mM MOPS, 0.5 mM EGTA). The activity of each complex was measured59. The pellet was 

resuspended in KME for analysis, and glutamate+malate (complex 1: 20 mM glutamate + 5 mM 

malate), succinate (complex II: 20 mM succinate with 7.5 μM rotenone) and complex IV substrate 

(1 mM N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD)/20 mM L-ascorbate with 7.5 μM 

rotenone) as substrates to identify problems in the electron transport chain 60,61. Specifically, 2 mM 

azide was added to determine consumption of complex IV. State 3 (0.2 mM ADP-stimulated), 

state 4 (ADP-limited) respiration, respiratory control ratio (RCR), maximal rate of state 3 

respiration (2 mM ADP and for TMPD/ascorbate), and rate of uncoupled respiration (0.04 mM 

dinitrophenol, DNP) were measured 60,61. The ratio of stimulated state3 and state4 respiration 

determined the Respiratory Control Ratio (RCR) 60,61.  

Oxygen consumption of mitochondria was measured using a previously reported 

methodology 61. A Clark-type oxygen electrode (Strathkelvin Instruments, North Lanarkshire, 

UK) was placed in a respiration buffer at 30 °C (80 mM KCl, 50 mM MOPS, 1 mM EGTA, 5 mM 

KH2PO4, 1 mg/ml defatted BSA) at pH 7.4 to measure the intact mitochondria oxygen needs 60.  

https://paperpile.com/c/QKrO5Q/PW2S
https://paperpile.com/c/QKrO5Q/PW2S
https://paperpile.com/c/QKrO5Q/ttqy+nZzI
https://paperpile.com/c/QKrO5Q/ttqy+nZzI
https://paperpile.com/c/QKrO5Q/ttqy+nZzI
https://paperpile.com/c/QKrO5Q/nZzI
https://paperpile.com/c/QKrO5Q/ttqy
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2.9 Cardiomyocyte Isolation 

Cardiomyocytes were isolated from mice (about six months to a year old) based on a 

protocol modified from previously published techniques 62,63. The mice were anesthetized with 

pentobarbital sodium (100 mg/kg intraperitoneally), and only the heart was excised from the 

thoracic cavity. Within a few minutes, the aorta was washed with bicarbonate buffer to clear excess 

blood and cannulated onto a Langendorff perfusion system 64. The heats were perfused for 

approximately five minutes at a constant pressure of 55 mmHg with a Ca2+-free bicarbonate-based 

buffer containing 120 mm NaCl, 5.4 mm KCl, 1.2 mm MgSO4, 1.2 mm NaH2PO4, 5.6 mm glucose, 

20 mm NaHCO3, 10 mm 2,3-butanedione monoxime, and 5 mm taurine that was continuously 

gassed with 95% O2 + 5% CO2. Digestion of the heart was carried out for about 15 minutes by 

adding collagenase type II (Worthington; 0.5 mg/ml each) and protease type XIV (0.02 mg/ml) to 

the perfusion buffer. The heart was perfused for about another fifteen minutes after adding more 

50 μm Ca2+. Then, the heart was taken off the system, the ventricles were cut into smaller pieces, 

stirred, and gently aspirated with a transfer pipet to assist with cell dissociation. The solution was 

then centrifuged until a cell pellet was formed and resuspended in a three-step Ca2+ procedure with 

different concentrations of calcium (125, 250, and 500 μm Ca2+). A sterilized minimum essential 

medium (catalogue number M1018, pH 7.35–7.45; Sigma) consisting of 1.2 mm Ca2+, 12 mm 

NaHCO3, 2.5% fetal bovine serum, and 1% penicillin-streptomycin was then added to these 

isolated cardiomyocytes before being plated into 35-mm cell culture dishes. These dishes had been 

coated with 20 μg/ml mouse laminin in phosphate-buffered saline on a rocker for 1 hour. Prior to 

beginning the experiment, the cardiomyocytes were incubated for 1 hour in a humidified 5% CO2 

chamber to attach to the plate surface.  

https://paperpile.com/c/QKrO5Q/RcP8+oWRk
https://paperpile.com/c/QKrO5Q/Titg
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2.10 Cardiomyocyte Simulated Ischemia and Reoxygenation 

The quality of isolated cardiomyocytes in the cell culture dishes was first quickly 

confirmed under a microscope. The cardiomyocytes were then subjected to simulated ischemia for 

40 min by first replacing the cell medium with an “ischemia buffer”. This buffer was made by 

mixing 137.88 mg NaCl, 40 mg NaHCO3, 2.4 mg NaH2PO4, 50 µl CaCl2-2H2O, 4.8 mg MgCl2, 

34 µl sodium lactate, 23.856 mg KCl, 32.84 mg 2-deoxyglucose and 20 ml of ultrapure water (pH 

adjusted to 6.2 and sterilized). Then the cells underwent 40 minutes of simulated ischemia in a 

37 °C incubator by adjusting the gas to 1-2% O2 and 5% CO2. Reoxygenation was accomplished 

by replacing the ischemic buffer with normal medium in normoxic conditions. Assays for 

assessment of cell necrosis and MPTP were then stained after 1 hour and the apoptosis assay stain 

was applied after 18 hours of additional incubation. 

2.11 TB staining 

Trypan blue (TB) staining was used to observe cell viability by comparing the cells that 

were permeable to the dye to the healthy cells that excluded it. After 1 hour of reoxygenation, 15 

µl of TB dye was added into the wells and incubated for 15 minutes (purchased from SigmaTM 

catalog number T8154). The myocytes were visualized under a Nikon Eclipse Ti-s microscope 

with a white light.  

2.12 TUNEL staining 

To analyze cardiomyocyte apoptosis, a nuclear DNA fragmentation detection kit via a 

fluorescence assay was utilized (purchased from ClontechTM catalog number 630108). The nuclear 

breaks were made by terminal transferase-mediated dUTP-digoxigenin nick end labeling 

(TUNEL) and TdT incorporates fluorescein- dUTP at the free 3'-hydroxyl ends of fragmented 

DNA. After 18 hours of reoxygenation, the cells in the chamber slides were fixed with 4% 
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formaldehyde/phosphate-buffered saline and placed in 4˚ for 25 minutes. Then, according to the 

manufacturer’s protocol, cells were permeabilized by treating in prechilled 0.2% TritonX-100/PBS 

for 5 min on ice. Then, the slides were washed with PBS in coplin jars for 5 minutes. The cells on 

the slide were then incubated with a combination of equilibration buffer, nucleotide mix 

(containing flourescein-dUTP), and TdT enzyme for 1 hour at 37oC. The reaction was stopped by 

immersing slides in 2X SSC, the slide were then counterstained with Vectashield mounting 

medium with 4’,6-diamidino-2-phenylindole (DAPI, a DNA intercalating dye for visualizing 

nuclei in fixed cells; catalogue number H1200, Vector Laboratories). The stained cells were 

viewed and analyzed under a Nikon Eclipse Ti-s microscope (wavelength 520 ± 20 nm).  

2.13 JC-1 staining 

To measure mitochondrial membrane potential, the cells were stained with a dye mixture, 

5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethylbenzimidazolyl-carbocyanine iodide (JC-1), 125µl of 

dimethyl sulfoxide (DMSO), and 1x Assay buffer according to the manufacturer’s protocol (kit 

purchased from BDTM Biosciences catalog number 551302). The cells were then incubated  at 

37 °C for 15 minutes. The stained cells were examined under a Nikon Eclipse Ti-s microscope 

with a blue Nikon intensilight C-HGFL fluorescent light. The depolarized mitochondrial 

membranes were indicated by a shift from red to green fluorescence as the JC-1 monomers utilized 

channels to enter the permeabilized membrane. 

2.14 Protein Isolation and Western Blots 

After mice were anesthetized, hearts were excised from the chest cavity and a Western Blot 

analysis was used that was previously recorded57. Extraction buffer (1 ml of lysis buffer containing 

20 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton, 2.5 mM 

sodium pyrophosphate, 1 mM -glycerophosphate, 1 mM Na3VO4, 1 g/ml leupeptin, 0.2 mM 

https://paperpile.com/c/QKrO5Q/HT43
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PMSF, and halt protease and phosphatase inhibitor mixture; Thermo Fisher Scientific Inc., 

Rockford, IL) was used to isolate total soluble protein from the whole heart tissue. A Bradford 

assay was utilized if needed to calculate the sample volume needed per well along with the Laemlli 

buffer (a ratio of 1:20 buffer to B-mercaptoethanol). Each sample was heated for 5 minutes in 98˚C 

and centrifuged for 30 seconds. The samples were injected into the gel wells, with running buffer 

(A Tris/Glycine/SDS buffer diluted in a 1:20 ratio of deionized water) in the cartridges. Sodium 

dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) over 1 hour at 180 volts 

denatured and separated 75µg protein from each sample. This was then transferred onto a 

nitrocellulose membrane (0.2µm pore size). A TBST buffer (one part TBS, one-twentieth part 

Tween 20, and nine parts deionized water), followed by Ponceau S were coated on top of the 

membrane, then washed with deionized water to visualize the protein lanes. The TBST buffer was 

added again and allowed to incubated for 5 minutes and rinsing, before repeating twice. 10 ml of 

blocking buffer (5% milk in 100 ml of TBST buffer) was added to the membrane and placed on a 

rocker for 1 hour. The blots were then rinsed in TBST buffer twice. The membrane was incubated 

overnight with primary antibodies (indicated in the following table 1)  on a rocker. A 1:1000 

dilution with 5% BSA was added onto the samples. The next day, the membrane was washed then 

incubated with  horseradish peroxidase-conjugated secondary antibody (1:2,000 dilutions) for 1 h 

at room temperature. The blots were developed using a chemiluminescent system (ECL Plus; 

Amersham Bioscience). The blots were exposed using Kodak film, and Image J software computed 

the optical density of the protein bands. 
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Table 1: Primary and Secondary Antibodies for Western Blot Analysis Each primary antibody 

was purchased separately and used in conjunction with a secondary antibody to identify protein 

expression. 

Primary 

Antibody Full Name Company 

Development 

Animal 

Secondary 

Antibody 

Catalog 

Number 

PTEN 

Phosphatase and tensin 

homolog 

Cell 

Signaling 

Rabbit 

polyclonal 

Anti-Rabbit in 

Donkey 9552 

pAKT 

Phospho-AKT (Ser473) or 

Protein Kinase B 

Cell 

Signaling 

Rabbit 

polyclonal 

Anti-Rabbit in 

Donkey 9271 

AKT 

Total AKT or Protein 

Kinase B 

Cell 

Signaling 

Rabbit 

polyclonal 

Anti-Rabbit in 

Donkey 9272 

GAPDH 

Glyceraldehyde 3-

phosphate dehydrogenase Santa Cruz 

Rabbit 

polyclonal 

Anti-Rabbit in 

Donkey sc-25778 

MDH 

Malate 

Dehydrogenase 

Cell 

Signaling 

Rabbit 

polyclonal 

Anti-Rabbit in 

Donkey 8610 

GDH Glutamate Dehydrogenase 

Cell 

Signaling 

Rabbit 

monoclonal 

Anti-Rabbit in 

Donkey 12793 

PDH Pyruvate Dehydrogenase Santa Cruz 

Rabbit 

polyclonal 

Anti-Rabbit in 

Donkey sc-292543 

Cox IV Cytochrome c Oxidase 

Cell 

Signaling 

Rabbit 

polyclonal 

Anti-Rabbit in 

Donkey 4844 

 

2.15 Data Analysis and Statistics 

Data was analyzed and presented using Prism statistical software. Statistical analysis to calculated 

significant values were performed using the one-way analysis of variance. Then pairwise 

comparisons of each group were taken using the Student-Newman-Keuls post hoc test. When the 

value given for p was less than 0.05, the comparison is deemed statistically significant. 
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Results 

The purpose of these experiments was to examine the the effects of cardiac miR-17-92 

deficiency in ischemia/ reperfusion conditions. First, the mice with the necessary mutant strain and 

tamoxifen-inducible CRE recombinase needed to be separated.  

 

Figure 6: Representative figure of agarose gel with PCR products using CRE primers.  Bright 

lines indicate presence of amplified DNA for comparison to end ladder lanes for appropriate sizing.  

 

PCR- products (molecular weight: 447 bp)  using following primers: 

CRE (608-630):        ATATCTCACGTACTGACGGTGGG,  

CRE (1054-1032):    CTGTTTCACTATCCAGGTTACGG  

 

Genotyping of mice using CRE primers: 

As shown in figure 6, the agarose gel (1.5 %) with PCR products using CRE primers indicated that 

mice tags with 2, 4,10,11 and 16 are positive for the tamoxifen-inducible CRE recombinase allele 

(342 bp band). Mice with tags number 1,3, 5, 6, 7, 8, 8, 12, 13,14, 15 and 17 are negative for CRE 

allele. The CRE primers check for the presence of the conditional knockout alpha-MHC-

MerCreMer transgene on the alpha myosin heavy chain promoter. This promoter directs 

expression of CRE onto adult and juvenile cardiomyocytes during tamoxifen treatment. CRE will 

then act on loxP sites to delete a section of DNA. For mice that test positive for the cre recombinase 

allele, tamoxifen treatment will induce CRE. However, the confirmation of the loxP sites is also 

needed in order to ensure a conditional knockout.  
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Figure 7: Representative Figure of Agarose Gel for Mutant miR-17-92 Cluster. Lanes 1-16 

shows PCR products using the following three primers to identify the mice with flox/flox allele.   

Fl/Fl Mutant:289 bp, Heterozygote: 255 & 280 bp, WT: 255 bp. A conditional knockout  that has 

been subjected to tamoxifen treatment will present at 441bp.  

 

oIMR8528 TCG AGT ATC TGA CAA TGT GG Common 

oIMR8529 TAG CCA GAA GTT CCA AAT TGG Wild type Reverse 

oIMR8530 ATA GCC TGA AAC CAA CTG TGC Mutant Reverse 

 

Genotyping of mice for flox/flox allele: 

As shown in figure 7, the agarose gel (1.7 %) indicated that mice tags with 1-16 were homozygous 

for the flox/flox allele (single band at 289 bp). Mice colonies with the flox/ flox allele were bred 

together to perpetuate the mutant transgene. These mice were also bred with both CRE positive 

and CRE negative alleles to promote genetic heterogeneity. The mutant transgene means that each 

miR-17-92 cluster is flanked by loxP sites, such that when CRE acts on the loxP sites it is deleted.  
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Figure 8: Representative Agarose Gel for Transgenic Genotyping. Lanes 1-17 contain PCR 

products using the following four primers to identify the mice with homozygous CRE (only 448 

bp band), heterozygous CRE (both 448 bp and 230 bp bands) or non transgenic (only 230 bp band). 

 

Genotyping with MYH6- CRE primers: 

 CRE (608-630): ATATCTCACGTACTGACGGTGGG,  

 CRE (1055-1032):  CCTGTTTCACTATCCAGGTTACGG,  

 A1CF (4879-4902): TTGGAGCTTCTGTTCAGGCCATAG,  

A1CF (5108-5085): TACCTGAGCAATTTCTGAGGTTCC,  

CRE: 447 base pairs, Nontransgenic: 230 base pairs.  

 

Genotyping of mice for homozygous CRE and heterozygous CRE: 

As shown in Figure 8, the agarose gel (1.7 %) indicated used PCR products of DNA from 

mice hearts and 4 primers. Mice tags with 2, 12,14,15 are homozygous CRE positive, while mice 

tags 6, 8 16, and 17 are considered nontransgenic mice. The rest of the mice are heterozygous CRE 

positive mice, evidenced by two distinct bands. Homozygous CRE mice respond better to 

administration of tamoxifen. Due to low breeding numbers, both hemizygous and homozygous 

CRE mice were used in these experiments.  
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A.        B. 

 

Figure 9: MicroRNAs in Hearts of WT and miR-17-92-def mice. Expression of (A) miR-17 

and (B) miR-20a  in C57, WT and miR-17-92-def following 1 week of completion of Tamoxifen 

treatment.  

 

Expression of miR-17 and miR-20a following tamoxifen treatment: 

After the tamoxifen treatment was given to the transgenic mice, miR-17-92 deficiency was 

checked using real-time PCR in comparison to a control group. Figure 9 shows the ratio of miR-

17 to Sno-202 (A) and miR-20a to Sno-202 (B) in the hearts of C57, WT and miR-17-92-def mice 

following treatment with Tamoxifen (20 mg/kg/day for 5 days). The miR-17 and miR-20a 

expression were not altered between groups before tamoxifen treatment. However, both 

microRNAs were significantly reduced following tamoxifen treatment in miR-17-92-def mice.  

The WT mice that received tamoxifen treatment were used to compare the effect of the tamoxifen 

on the miR-17-92 cluster in mice that tested negatively for the CRE allele.  
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Figure 10: Mitochondrial Oxidative Phosphorylation. Function of complexes I (with substrates 

glutamate+malate) and II (pyruvate+malate) of the electron transport chain were observed 

following knockdown of the miR-17-92 cluster in mice. 

 

 

Cardiac mitochondrial oxidative phosphorylation in WT and miR-17-20-def mice 

To elucidate the effects of miR-17-92 knockdown on electron transport chain, 

mitochondrial oxidative phosphorylation were measured in isolated mitochondria of hearts of WT 

and miR-17-92-def mice after tamoxifen treatment. Figure 10 shows that compared to WT, 

oxidative phosphorylation was decreased using Glutamate+Malate as complex I substrate in the 

hearts of miR-17-92-deficient mice. However, there is no significant difference of oxidative 

phosphorylation using Pyruvate+Malate as well as  succinate + rotenone suggesting that complex 

II remained unaffected in miR-17-92-deficient mice. In order to further understand oxidative 

phosphorylation dysregulation, each protein was studied further by determining concentrations via 

western blot.  
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Table 2: Survival Rates of Mice. Below, WT and miR-17-92-def mice lives were tracked 

following 30 min ischemia (I) and reperfusion (R) surgery. 

 

 

Myocardial injury following Ischemia/reperfusion injury in miR-17-92-deficient mice: 

in vivo LAD ligation was performed to understand if the knock down of miR-17-92 had any effect 

on the survival of mice after 24 hours of reperfusion. A total of 59 mice were used in this study 

which included 31 miR-17-92-deficient and 28 WT mice. These mice were subjected to 30 minutes 

of LAD ligation and 24 hours of reperfusion (I/R). A total of 15 out of 31 miR-17-92-deficient 

mice survived following in vivo I/R by 30 minutes of LAD ligation and 24 hours reperfusion. Post 

I/R survival rate of miR-17-92 deficient mice is approximately 48 %. In contrast, the survival rate 

was significantly higher in WT mice where 20 out of 28 (or 71%) WT  mice survived following 

in vivo I/R injury. 
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A 

 

B       C 

 

Figure 11: Infarct Size and Risk Area Measurement following I/R injury. A. Representative 

pictures of whole TTC and Phthalo blue staining of WT and miR-17-92-def mice hearts following 

30 min of ischemia (I) and 24 hours of reperfusion (R). B. Infarct size as a percentage of risk area. 

C. Risk area as percent of the left ventricle.  

 

Infarct Size and Cardiac Function after I/R injury:  

The infarct size was also measured following 30 min of ischemia and 24 hours of reperfusion in 

WT and miR-17-92-def mice. As shown in Figure 11 A, Viable myocardium was stained bright 

red with TTC staining, while the white region was the infarcted myocardium. The blue region was 

demarcated as non-risk area. Infarct size was significantly increased in miR-17-92-deficient mice 

(52.9±3.6%) after I/R injury as compared to WT mice (41.6±2.2%) (Figure 11B). However, there 
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are no significant difference of the risk area between groups (Figure 11C). The red area indicated 

risk area that was exposed to ischemia via the LAD ligation. The purpose of measuring infarct size 

was to study how harmful the ischemia was to each heart and if the miR-17-92 changed responses 

in the event of a myocardial infarction. 
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A 

 

B 

 

Figure 12: Cardiac Function of WT and miR-17-92-deficient Mice before I/R and after I/R 

Injury. A. Representative M-mode images demonstrating the LV contractility in WT and miR-

17-92-def mice at baseline (Before I/R). B. Representative M-mode images demonstrating the LV 

contractility in WT and miR-17-92-def mice after 30 min ischemia and 24 hours of reperfusion.   

 

A       B 
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C       D 

Figure 13: Cardiac Function of WT and miR-17-92 Mice before and after I/R.  A. Percentage 

of Ejection Fraction (EF), B. Percentage of Fractional Shortening (FS). C. Left Ventricular End 

Diastolic Diameter (LVEDD) and D. Left Ventricular End Systolic Diameter (LVESD) were 

measured using at baseline and after I/R in both WT and miR-17-92-def mice.  

 

Cardiac function was tested using echocardiograms and comparing measurements to a baseline. 

This was studied to understand if there was heart failure occurring. Fractional Shortening (FS) was 

calculated as a percentage by subtracting LV end systolic diameter (LVESD) from LV end 
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diastolic diameter (LVEDD) and dividing by LVEDD. FS was significantly decreased in miR-17-

92-def mice (17.9±2.9%, n=8) after I/R as compared to all groups (n=10; p<0.005) (Figure 13 B). 

Ejection Fraction (EF), a measurement of stroke volume and end diastolic volume, was found to 

be significantly decreased in miR-17-92-def mice (38.6±5.9%) as compared to all others (WT-

Baseline: 58.8±1.6%, WT- I/R: 54.62±2.9% and miR-17-92-def-Baseline: 57.22±2.9%1.4%; 

p<0.0.1) as shown in Figure 13 A. The reduction of FS and EF indicated that miR-17-92 mice 

exhibited significant defect in cardiac function following I/R injury. Although, there were no 

significant differences of  LVEDD and  LVESD between groups (Figure 13 C, D).  
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Figure 14: Echocardiography Measurement of Left Ventricle before and after I/R. Anterior 

wall diastolic thickness (AWDT), Anterior wall systolic thickness (AWST), Posterior wall 

diastolic thickness (PWDT) and Posterior wall systolic thickness (PWST) at baseline and post I/R 

in WT and miR-17-92-deficient mice. 

 

 

 

 

Various other aspects of the left ventricle were measured before and after I/R to see if there were 

any significant changes to indicate either wall thinning or hypertrophy from adverse remodeling 
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in the heart due to ischemia. There were no significant differences of anterior wall diastolic 

thickness (AWDT), anterior wall systolic thickness (AWST), posterior wall diastolic thickness 

(PWDT) and posterior wall systolic thickness (PWST) at baseline and post I/R between WT and 

miR-17-92-deficient mice. The anterior wall was the top portion of the M-mode photograph taken 

in Figure 12, while the posterior wall was the bottom portion of the photograph. Diastole indicates 

that the heart is relaxed, the diastolic measurements were taken at the widest point. The systolic 

measurements were taken when the heart was most contracted, or the narrowest point.  
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A 

B 

 

Figure 15: Assessment of Cardiomyocyte Necrosis by trypan blue (TB) Staining.  A. 

Representative picture of TB staining of cardiomyocytes of WT and miR-17-92-def mice 

following 30 min simulated ischemia (SI) and 1 hour reoxygenation (RO). TB-positive cells (blue-

positive myocytes) indicates necrotic cells. B. The percentage of trypan blue staining.  

 

Effect of miR-17-92 deficiency on cardiomyocyte necrosis and apoptosis following simulated 

ischemia and reoxygenation: 

The in vitro experiments were then performed to elucidate necrosis, apoptosis, and 

mitochondrial membrane potential after simulated ischemia and reperfusion in primary 

cardiomyocytes isolated from WT and miR-17-92-def mice following tamoxifen treatment.   After 

40 min SI and 1 hour RO, the percentage of trypan blue positive cardiomyocyte increased 

significantly isolated from both WT (25.8±1.5 %) and miR-17-92-def (42±2.3 %) mice as 
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compared to respective controls (WT: 11.2±2.6 % and miR-17-92-def: 10.8±2.1 %) (Figure 15). 

The necrosis was significantly higher in cardiomyocytes isolated from miR-17-92-def mice 

following SI/RO as compared to cardiomyocytes from WT mice (n=4, p<0.0001). Necrosis is 

indicative of immediate cell death, and this test uses the broken plasma membrane to indicate 

necrotic cells.  
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A

 

B 

 

Figure 16: Assessment of Cardiomyocyte Apoptosis using TUNEL Staining. A. Representative 

pictures of adult cardiomyocytes of WT and miR-17-92-def mice following 30 min simulated 

ischemia (SI) and 18 hour reoxygenation (RO). Bright green fluorescent nuclei (FITC staining) 

indicates TUNEL positive cells (denoted by white arrows) and blue nuclei (DAPI staining) 

indicates total nuclei. B. The percentage of apoptosis. 

 

Figure 16 shows that apoptosis, as indicated by TUNEL positive nuclei, was significantly 

higher  in cardiomyocytes of both WT (3.5±0.6 %) and miR-17-92-def (11.5±1.8 %) mice 
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following SI/RO as compared to respective controls (WT: 2.8±0.7 % and miR-17-92-def: 

1.9±0.5 %). Apoptosis was further exacerbated in cardiomyocytes of miR-17-92-def mice with 

SI/RO as compared to WT subjected to SI/RO, WT, and miR-17-92-def mice (n=4; p<0.0001 vs 

others). These results suggest that cardiomyocytes isolated from the  miR-17-92-def mice are more 

susceptible to SI/RO injury than cardiomyocytes of WT mice.  
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A  

 

B 

 

Figure 17: Assessment of Mitochondrial Membrane Potential using JC1 Staining. A. 

Representative picture of isolated cardiomyocytes from WT and miR-17-92-def mice were 

incubated with JC-1 staining following 40 min simulated ischemia (SI) and 1 hour reoxygenation 

(RO). The red cells are non-apoptotic cells with intact mitochondrial membrane potential. The 

green fluorescent cells are apoptotic or dead cells. B. Quantification of JC-1 aggregate/monomer 

ratio.  

 

Effect of miR-17-92 deficiency on mitochondrial membrane potential in cardiomyocytes 

following SI/RO injury: 

Cardiomyocyte apoptosis was also detected using a mitochondrial membrane potential 

(∆⨚m) detection kit containing cationic lipophilic probe JC-1. The mitochondria of non-apoptotic 

cells appear in red following the aggregation of the JC-1 reagent, which emits red fluorescence at 
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590 nm (Figure 11). In contrast, in the apoptotic or dead cells, the JC-1 dye remains in its 

monomeric form, thereby emitting relatively more green fluorescence. As shown in Figure 17, 

there was a clear dissociation of JC-1 aggregates in the mitochondria of cardiomyocytes isolated 

from WT (36.5±6.3 vs 97±6.2) and miR-17-92-def (8.2±2.2 vs 101.2±11.6) mice following SI/RO 

injury as compared to their respective controls (n=4; p<0.0001 vs controls). The ratio of JC-1 

aggregates to monomer was significantly reduced in cardiomyocytes of miR-17-92-def mice as 

compared to cardiomyocytes of WT following SI/RO (n=4; p<0.05 vs WT+SI/RO).   
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Figure 18: The Expression of miR-17-92 Downstream Targets PTEN and AKT. The first 

image is a representative immunoblots of WT and miR-17-92-def mice showing the expression of 

phosphatase and tensin homolog (PTEN), phosphorylated protein kinase B (p-AKT), total protein 

kinase B (AKT) and Glyceraldehyde 3-phosphate dehydrogenase (GAPDH).  The lower panel 

showed the densitometric analysis of the ratios of PTEN/ GAPDH, pAKT/total AKT, and 

AKT/GAPDH. 

 

Effect of miR-17-92 Deficiency on its Downstream Targets PTEN and AKT 

Hearts after ischemia and reperfusion were used to identify the expression of proteins that were 

possible targets of miR-17-92. Figure 18 shows a significant increase in expression of PTEN 

following I/R in WT mice as compared to controls. Additionally, the induction of the expression 

of PTEN in miR-17-92-def mice was more prominent as compared to WT mice following I/R 

injury. Moreover, miR-17-92-def mice had significantly decreased expression of p-AKT as 

compared to WT mice following I/R injury and WT/ miR-17-92-def mice before I/R injury. 

Finally, total AKT was significantly lower in WT mice before I/R as compared to all other groups. 
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Figure 19: The Expression of MDH, GDH and PDH in Cardiac Mitochondria of WT and 

miR-17-92-def Mice. Representative immunoblots showing the expression of Malate 

Dehydrogenase (MDH), Glutamate Dehydrogenase (GDH), Pyruvate Dehydrogenase (PDH) and 

Cox IV.  The lower panel showed the densitometric analysis of the ratios of MDH/Cox IV, 

GDH/Cox IV and PDH/Cox IV.  

 

The expression of MDH, GDH and PDH in cardiac mitochondria of WT and miR-17-92-def 

mice 

Figure 19 indicated there was a significant reduction of malate dehydrogenase expression 

in mitochondria of miR-17-92-def mice hearts as compared to WT. Additionally, there is a 

significant induction of glutamate dehydrogenase in mitochondria of miR-17-92-def mice hearts 

as compared to WT.  There is no significant difference of pyruvate dehydrogenase between groups.  
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Discussion 

CHD causes major strain to the healthcare system by leading to myocardial infarction and 

subsequent heart failure. The current therapy for treating myocardial infarctions is reperfusion, 

though this treatment itself can lead to negative consequences such as apoptosis and necrosis.  The 

rapid return to physiological pH during reperfusion causes the engagement of pro-apoptotic factors 

that end in programmed cell death. Mitochondrial dysregulation due to the generation of reactive 

oxygen species and membrane depolarization release indicators for a caspase cascade. This 

delayed cell death can cause the left ventricle to become weaker as myocytes do not regenerate, 

leading to remodeling and heart failure.  

MicroRNA have emerged as novel regulators of the process of cardiac growth and 

function. Through binding to mRNA sequences, their role often includes post-transcriptional gene 

expression by binding to the 3’UTR and precipitating degradation or inhibition. MiR-17-92 has 

emerged as an instrumental regulator of cardiac development and cancer through bypassing 

apoptosis through several factors such as Bax, Bcl-2, Bim, and PHD3. PTEN was also identified 

as a potential target and is important in regulating cardiac contractility and the PI3K/AKT pathway. 

Some studies contradict these findings, and thus studying the deletion of the miR-17-92 cluster is 

imperative to finding innovative targeted therapies utilizing this gene, such as regulation of 

epigenetic networks 65. Because upregulation of miR-17-92 can improve cardiac function after a 

myocardial infarction, giving a miR-17-92 mimic could be an option to de-differentiate and 

proliferate cardiomyocytes 66. Overexpression of this family was also proven to increase wall 

thickness, total cardiomyocyte number, and left ventricle dimension while during ischemia 

reperfusion was modestly cardioprotective 29. During cardiovascular morphogenesis, this 

constitutive overexpression can cause severe hypertrophic and a lethal cardiomyopathy37.  The 

https://paperpile.com/c/QKrO5Q/rYu0
https://paperpile.com/c/QKrO5Q/ozcE
https://paperpile.com/c/QKrO5Q/JOKW
https://paperpile.com/c/QKrO5Q/i446
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purpose was to investigate how the deletion of the miR-17-92 cluster determines myocardial 

infarction survival rates, infarct size, and apoptosis through proteins such as PTEN. The results of 

the miR-17-92 deletion in this study caused infarct size and apoptosis to increase as well as 

upregulation of PTEN. These significant results show that expression of pAKT and suppression 

of PTEN would be beneficial to a patient following myocardial infarction. Finding the right 

balance to overcome apoptosis, but not creating hypertrophy will be important in treating heart 

failure. 

After ischemia and reperfusion via LAD ligation, survival rate was significantly reduced 

in miR-17-92 deficient mice (48%) compared to WT mice (71%). The miR-17-92 cluster is 

important for survival not only in neonatal mice, but also in cases of simulated ischemia based on 

the results. Even among those mice that survived, cardiac functions such as Ejection Fraction and 

Fractional Shortening, were reduced with augmentation of myocardial infarct size in miR-17-92-

def mice as compared to WT mice. These cardiac functions were measured using 

echocardiography before and after surgery, and indicate the beginning of heart failure as shown in 

figures 12 and 13. Thus, the miR-17-92 cluster can weaken the heart and further injury in the case 

of myocardial infarction. 

After identifying and breeding CRE inducible miR-17-92 mice through genotyping, 

knockdown via tamoxifen was checked using real time PCR through heart samples. Significant 

differences in  miR-17 and miR-20 levels were found between treated mice and all others groups, 

proving that the tamoxifen treatment was able to remove the miR-17-92 cluster from the heart. 

This meant that miR-17-92 would not be able to influence downstream targets. Several 

mitochondrial defects were identified as well as decreased survival rates, increased infarct size, 

and increased apoptosis and necrosis provided by in vivo and in vitro studies. Downstream targets 
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of PTEN and pAKT were upregulated and suppressed, respectively in mice after I/R, suggesting 

that miR-17-92 deletion increases apoptosis through inhibition  of PI3K/AKT signaling. In miR-

17-92-def mice, complex 1 showed dysregulation meaning that the instability of the electron 

transport chain could be a factor in increasing infarct size (even with similar risk areas) and 

apoptosis significantly after I/R or SIRO, respectively. Additionally, the mitochondria could play 

an even bigger role through its decrease in expression of malate dehydrogenase and increase in 

glutamate dehydrogenase. Overexpression of this cluster can perhaps be important to prevent 

apoptosis in patients dealing with myocardial infarction.  

The TB staining shows that the higher concentrations of necrotic cells in miR-17-92-def 

myocytes were indicative of immediate cell death (due to the broken plasma membranes) 

contributing to a larger infarct size following ischemia and reperfusion (as shown in Figure 15). 

TUNEL staining for apoptosis showed higher amounts in miR-17-92-def following simulated 

ischemia and reperfusion significantly compared to both the control in these conditions and to the 

miR-17-92-def cardiomyocytes without simulated ischemia. This indicates that the cell death 

continues in the heart, leading to an even greater infarct size that necrosis alone. Both of these 

phenomenons  show that the larger infarct size from the miR-17-92-def mice is a result of the 

increased rates of apoptosis and necrosis. The further study of mitochondrial membrane changes 

shows that the increased apoptosis could be due to the loss of polarization. When this happens, 

contents from the mitochondria, like cytochrome c can be released and start a signaling pathway 

for apoptosis. The JC-1 staining showed that the mitochondrial membrane was not able to 

significantly aggregate the JC-1 reagant in comparison to miR-17-92-def group  before simulated 

ischemia and both WT groups. This disruption of the membrane in ischemia and reperfusion is 

related to the diminished upstream regulators of PTEN.  
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The western blots of MDH, GDH and PDH in cardiac mitochondria showed that there was 

significantly decreased expression of MDH and significantly increased expression of GDH in miR-

17-92-def mice. Both of the proteins that changed concentrations as shown in figure 19 are 

involved in the TCA cycle and help produce ATP. In the absence of oxygen, these proteins will 

not be able to fully execute their role and as they rely on electron acceptors such as NAD+ or 

NADP+. If these electron acceptors are not available, then these electrons could create free oxygen 

radicals and cause the mitochondria to dysfunction.  

In cardiomyocytes, when AKT is phosphorylated it becomes activated and acts in the 

phosphorylation of Bad and regulation of cell cycle progression through p213,50. PTEN prevents 

the phosphorylation of AKT from PIP2 and PIP3, which prevents the rest of the signaling cascade 

from occurring thus leading increased apoptosis as the results of this study show3. In our  present 

study, the western blots using  PTEN and pAKT antibodies showed the increased concentration of 

PTEN both before and after IR in hearts of miR-17-92-def mice with the concomitant reduction of 

phosphorylation of AKT only after IR in hearts of miR-17-92-def mice. Ischemia and reperfusion 

(IR) cause the inhibition of pAKT signaling which leads to  increased apoptosis and decreased 

contractility. These changes, as shown in Figure 18, demonstrate that the reverse signaling can 

happen in overexpression of miR-17-92 and may help with future therapies to reduce apoptosis 

and increase contractility following a myocardial infarction. Despite these results showing that the 

possibility of  increased expression of miR-17-92 could change infarct size and contractility, recent 

evidence demonstrates that cardiac growth can occur in exercise due to overexpression of miR-

17-3p, so inducing this cluster may not be protective in all cases67.  Perhaps using this cluster as a 

biomarker could be influential in diagnosing issues with heart failure. For example, miR-19b has 

been indicated as a potential biomarker for collagen cross-linking in heart failure patients68. MiR-

https://paperpile.com/c/QKrO5Q/nLyd+fXvD
https://paperpile.com/c/QKrO5Q/fXvD
https://paperpile.com/c/QKrO5Q/bMCo
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19 has a myriad of roles such as cardiomyocyte proliferation and protection against ischemic injury 

68,69. 

Further studies need to be completed in order to fully construct the role of miR-17-92 in 

cardiac ischemia and reperfusion. For in vivo studies, more tissue samples from other areas of the 

mouse should be run through a real time PCR to ensure sole deletion of this cluster in the heart. A 

comparison for mitochondrial function after I/R surgery would be imperative to understand how 

the deletion of the miR-17-92 affects oxidative phosphorylation. Both WT and miR-17-92-def 

mice hearts after 24 hours of reperfusion should be analyzed. Additionally, an apoptotic assay via 

TUNEL staining would be necessary after I/R, especially at different timepoints to better resolve 

how the miR-17-92 cluster exacerbates infarct size. Finally, the in vitro studies should include a 

protein analysis from the myocytes after simulated ischemia and reoxygenation. This work could 

open up information on how to treat patients after a myocardial infarction or for those who are 

being treated with CHD. More work should be completed on side effects of these therapies, 

particularly in aging animal models would be imperative to ensure safety in humans. Target 

sensitivity would also need to be tested to understand appropriate concentrations of miRNA 

inhibitors and mimics70.  
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